

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF COMMERCE, HUMAN SCIENCES AND EDUCATION

DEPARTMENT OF ECONOMICS ACCOUNTING AND FINANCE

QUALIFICATION: BA	ACHELOR OF ECON	OMICS HONOUR	S DEGREE
QUALIFICATION CO	DDE: 08HECO	LEVEL:	8
COURSE CODE:	AEM810S	COURSE NAM	ME: APPLIED ECONOMETRICS
SESSION:	JULY 2023	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

SECOND OPP	ORTUNITY QUESTION PAPER
EXAMINER(S)	Prof. Tafirenyika Sunde
MODERATOR:	Dr. Reinhold Kamati

INSTRUCTIONS		
	1.	Answer all questions.
	2.	Write clearly and neatly.
	3.	Number the answers.

PERMISSIBLE MATERIALS

- 1. Ruler
- 2. calculator

THIS QUESTION PAPER CONSISTS OF 4 PAGES

QUESTION 1 [20 marks]

a) Using examples, distinguish between cross-sectional and panel data.

[3 marks]

- b) Explain the conditions under which you can use the Ordinary Least Squares (OLS) methodology. [3 marks]
- c) State the informal methods of testing for nonstationarity.

[4 marks]

d) State the three equations used to test for nonstationarity when using the Dickey-Fuller test. [10 marks]

QUESTION 2 [20 marks]

Use Y as the dependent variable and X_1 , X_2 and X_3 as the independent variables to:

a) Specify the long-run equation and the static error correction model (ECM).

[4 marks]

- b) Describe how you conduct the cointegration test. [4 marks]
- c) Specify the **dynamic** error correction model (ECM). [4 marks]
- d) State the short-run parameters of the model. [4 marks]
- e) State the long-run parameter(s) of the model. [4 marks]

QUESTION 3 [20 marks]

Suppose you want to test for the Dynamic Granger causality between GDP (Y) and money supply (MS):

$$\Delta Y_{t} = \lambda_{0} + \sum_{i=1}^{n} \lambda_{1i} \Delta Y_{t-i} + \sum_{i=1}^{n} \lambda_{2i} \Delta M S_{t-1} + \mu_{1t}$$
 (1)

$$\Delta MS_t = \varphi_0 + \sum_{i=1}^n \varphi_{1i} \Delta Y_{t-i} + \sum_{i=1}^n \varphi_{2i} \Delta MS_{t-1} + \mu_{2t}$$
 (2)

- f) What condition must be met for MS to Granger causes Y? [5 marks]
- a) What condition must be met for Y to Granger cause MS? [5 marks]
- b) What condition must be met if there is bidirectional causality? [5 marks]
- c) What condition must be met if there is no causality? [5 marks]

QUESTION 4 [20 marks]

- (a) What is the difference between a static and a dynamic model?
- (b) State an AR(2) model using the variable GDP. [2]
- (c) State a distributed lag model (DLM) using variable GDP. [2]
- (d) State the Auto Regressive Distributed Lag Model (ARDL) using the variable GDP and gross fixed capital formation (GFCF), where GDP is the dependent variable.
- (e) Given the following ARDL equation:

$$GDP_t = \alpha_0 + \alpha_1 GDP_{t-1} + \beta_0 PCE_t + \beta_1 PCE_{t-1} + \theta_0 PDI_t + \theta_1 PDI_t$$

- i. State all the short-run impact multipliers. [2]
- ii. What are the short-run impact multipliers associated with PCE and PDI? [2]
- iii. What are the cumulative short-run multipliers of PCE and PDI after one period? [4]
- iv. Determine the long-run multipliers with respect to PCE and PDI.[2]

QUESTION 5 [20 Marks]

- (a) Interpret the unit root tests in the Tables (i) and (ii) below.
- [5]
- (b) Write down the equation employed to do these tests.

[5]

[2]

Null Hypothesis: GDP has a unit root	
Exogenous: Constant, Linear Trend	

		t-Statistic	Prob.*
Augmented Dickey-F	uller test statistic	-0.044739	0.9934
Test critical values:	1% level	-4.309824	
	5% level	-3.574244	
	10% level	-3.221728	

^{*}MacKinnon (1996) one-sided p-values.

/ii)

/:\

Null Hypothesis: D(GDP) has a unit root Exogenous: Constant, Linear Trend

		t-Statistic	Prob.*
Augmented Dickey-Fu	uller test statistic	-3.819094	0.0304
Test critical values:	1% level	-4.323979	
	5% level	-3.580622	
	10% level	-3.225334	

*MacKinnon (1996) one-sided p-values.

(c) The diagnostic results below were derived from an estimated VAR model.

Satisfies the st	ability condition).				
Root		M	Modulus		
0.744720 - 0.333526i		0.8	0.815995		
0.744720 + 0.333526i		0.815995			
-0.079781	- 0.748074i	0.7	0.752316		
-0.079781 + 0.748074i		0.752316			
(b) VAR Residua	I Serial Correlation LM Tes				
Lag	LRE* statistics	df	Probability		
1	7.898010	4	0.0954		
2	7.361877	4	0.1180		
3	5.466048	4	0.2427		
c) Jarque-Bera N	Vormality test				
Component	Jarque-Bera	df	Probability		
1	0.635585	2	0.7278		
2	1.339729	2	0.5118		
(d) VAR Residua	l Heteroskedasticity Tests (Includes Cross Te	erms)		
Chi-square	df		Probability		
46.81562	42		0.2814		

Interpret these results and give the overall conclusion you find on the estimated VAR model [10]